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Abstract
Contemporary image and video editing systems enable diverse spatially localized and temporally extended modifi-
cations, including object insertion, background replacement, relighting, retiming, and generative synthesis. As these
operations become more accessible and numerous, the assessment of visual quality requires metrics that explicitly
account for spatial and temporal consistency rather than only global distortion with respect to a nominal reference.
Spatial consistency concerns how edited regions integrate with surrounding content in terms of geometry, appear-
ance, and semantics, whereas temporal consistency concerns how modifications evolve over time without causing
flicker, motion discontinuities, or structural drift. Human observers judge these properties jointly, integrating local
evidence across space and time under constraints of visual attention and memory, so computational metrics that
ignore these interactions may correlate weakly with perceived plausibility. This text discusses the formulation of
perceptual metrics designed to evaluate spatial and temporal consistency in edited visual media, emphasizing repre-
sentations that combine low-level gradients, mid-level structures, and high-level learned features. It examines how
spatiotemporal derivatives, graph-based regularity measures, and probabilistic models of human preference can be
used to define differentiable objective functions suitable both for evaluation and for guiding optimization-based
editing algorithms. It also considers numerical issues associated with large-scale video data, including sampling
strategies, stability of gradient-based optimization, and computational trade-offs. Finally, it outlines experimental
protocols for benchmarking such metrics against human judgments, with attention to the diversity of editing oper-
ations and viewing conditions, and identifies open questions in aligning metric predictions with human perception
of edited visual media.

1. Introduction

Editing of visual media has shifted from manual frame-by-frame manipulation to workflows that heav-
ily rely on algorithmic and learning-based components [1]. Modern pipelines support operations such
as object removal, inpainting, compositing, style transfer, relighting, and temporally coherent generative
synthesis across long sequences. These operations are increasingly applied not only in film production
but also in user-generated content, where automatic or semi-automatic tools perform complex transfor-
mations that would otherwise be impractical. As a result, quantitative assessment of edited content needs
to move beyond simple signal fidelity toward measures that reflect whether the edits produce spatially
and temporally coherent imagery that remains subjectively plausible to human observers [2].

Traditional full-reference image and video quality metrics are typically defined as distances between
an original signal and a processed version, often focusing on pixel-wise errors, frequency-domain dif-
ferences, or local structural similarity. In edited media, however, the objective is rarely to reproduce an
exact reference [3]. Instead, editing operations intentionally introduce new structures, remove content,
or alter appearance while remaining consistent with the surrounding scene. Portions of the sequence
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may have no ground-truth counterpart, and even when a reference exists, the perceptual acceptability of
deviations depends strongly on how they integrate spatially and temporally. A small local discrepancy
can be unacceptable if it breaks global illumination or motion coherence, whereas a larger deviation
may be tolerated if it remains consistent with scene semantics and temporal dynamics.

Spatial consistency in edited visual media can be informally described as the property that edited
regions do not appear pasted, floating, or out of place relative to the underlying scene. This involves
geometric compatibility, including perspective and scale; photometric compatibility, including color,
shading, and contrast; and semantic compatibility, including object identity and interaction with context
[4]. Temporal consistency refers to the continuity of these properties across time, such that motion,
deformation, and appearance changes in edited regions align with the physical dynamics of the scene
and with camera motion. Typical temporal artifacts include flickering textures, inconsistent shadows,
temporal aliasing, or abrupt changes in object shape that violate expected motion trajectories or temporal
integration in the visual system.

To evaluate these properties computationally, metrics need to encode spatiotemporal dependencies
across multiple scales, often using representations that extend beyond raw pixel intensities. At the same
time, metrics must be tractable for high-resolution and long-duration sequences and, in many applica-
tions, differentiable with respect to the edited content so that they can be used as objective functions
during optimization or learning. These requirements motivate formulations based on linear operators,
multiscale transforms, and learned feature spaces, combined with statistical models that connect metric
values to subjective judgments of spatial and temporal coherence.

Perceptual metrics for edited media face several structural challenges [5]. First, edits may be local-
ized to specific regions, making it necessary to weight errors differently in edited and unedited areas
while still accounting for global context. Second, edited frames can exhibit long-range dependencies;
for example, a relit object must remain consistent with distant cast shadows, or a synthesized background
must respect the parallax implied by camera motion. Third, human observers may exhibit different sensi-
tivities to inconsistencies depending on viewing conditions, task, and the presence of distractors, which
complicates the mapping from metric scores to perceived quality. Addressing these challenges requires
a combination of perceptual modeling, mathematical formulation, and empirical calibration.

The following sections discuss the perceptual foundations relevant to spatial and temporal consistency
in edited media, propose mathematical formulations that represent edited sequences as spatiotemporal
tensors equipped with differential and probabilistic structures, and describe learning-based approaches
that fit parametric metrics to human judgments [6]. Numerical aspects, such as stability of gradient-based
optimization and efficient sampling in space-time, are considered alongside experimental protocols for
validating metrics. Throughout, emphasis is placed on the interplay between spatial and temporal aspects
of perception and on how this interplay can be reflected in reproducible, differentiable metrics applicable
to a broad spectrum of editing tasks.

2. Perceptual Foundations of Spatial and Temporal Consistency

Human perception of edited visual media is governed by mechanisms that jointly integrate spatial and
temporal context. Spatial visual processing is organized hierarchically, with early stages responding
to local edges, orientations, and textures, and later stages representing object-level structure and scene
layout. Temporal processing integrates information over windows that depend on motion speed, contrast,
and spatial frequency content [7]. Within these hierarchies, the perception of consistency is not limited
to local agreement of pixel values but depends on relational properties such as continuity of contours,
alignment of motion trajectories, and coherence of illumination across surfaces.

Spatial consistency in edited frames involves the alignment of several cues that observers use to infer
three-dimensional structure and material properties. Geometric cues include perspective convergence,
relative size, and occlusion relations, all of which constrain the plausible placement of synthesized
or moved objects. Photometric cues include color balance, shading gradients, specular highlights, and
cast shadows, which jointly inform the interpretation of surface reflectance and lighting. When edited
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Figure 1: Overview of a perceptual pipeline in which an editing operator transforms an input sequence into an
edited sequence that is evaluated by spatial and temporal consistency modules, aggregated into a scalar score, and
compared against human observer preferences.

content violates these constraints, such as by introducing an object with inconsistent shading direction
or inconsistent blur relative to its depth, observers may interpret the region as pasted or artificial even if
local pixel-level distortions are small.

Texture and noise statistics also contribute to spatial consistency [8]. Surfaces within a scene often
exhibit characteristic spatial frequency spectra and correlation structures. Editing operations that replace
or generate textures must preserve local anisotropy, orientation, and granularity patterns that are con-
sistent with the surrounding region. Mismatches in noise level, such as a denoised foreground inserted
into a noisy background, can be particularly noticeable because the visual system is sensitive to unnatu-
ral homogeneity or grain differences. Spatial consistency metrics therefore benefit from descriptors that
capture such statistics at multiple scales, allowing a distinction between acceptable texture variation and
disruptive inconsistency.

Temporal consistency is shaped by mechanisms of motion perception and temporal integration [9].
Observers tend to integrate information across short time intervals, forming expectations about the
trajectories of objects and the evolution of illumination. When an object is edited across frames, any
discontinuity in position, shape, shading, or occlusion that violates these expectations can produce per-
ceptual artifacts such as jitter, flicker, or implausible motion. For example, if a synthesized object moves
at a speed inconsistent with the background parallax implied by camera motion, or if shadows and reflec-
tions fail to update coherently over time, the resulting inconsistency can be detected even when single
frames appear visually plausible.
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Editing operation Spatial objective Temporal objective Typical artifacts

Object insertion / com-
positing

Geometric and photo-
metric alignment with
scene layout

Consistent motion
and occlusion across
frames

Floating objects, mis-
aligned scale, inconsis-
tent shadows or blur,
popping edges

Background replace-
ment / inpainting

Fill holes plausibly
with coherent textures
and structures

Stable background
evolution under cam-
era motion

Texture seams, per-
spective errors,
parallax violations,
temporal flicker in fill
regions

Relighting / recoloring Consistent shading,
color balance, and con-
trast across surfaces

Smooth evolution of
lighting with motion
and scene dynamics

Shadow direction
changes, inconsistent
specular highlights,
temporally unstable
white balance

Retiming / motion edit-
ing

Maintain plausible
geometry in inter-
polated or removed
frames

Smooth trajectories
and physically plausi-
ble timing

Motion jitter, tempo-
ral aliasing, ghosting,
duplicated or missing
limbs

Generative synthe-
sis (video diffusion,
GANs)

Globally coherent lay-
out and semantics in
each frame

Long-range temporal
coherence without
structural drift

Structurally drift-
ing objects, identity
switches, texture
crawling, unstable
global illumination

Table 1: Representative editing operations and associated spatial and temporal challenges in edited visual media.

Video
Spatiotemporal

tensor -
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Spatial

gradients (�G , �H)
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derivative �C

CUBES
Multi-scale
features 5C ,G

Figure 2: Representation of an edited video as a spatiotemporal tensor - with linear spatial and temporal derivative
operators generating gradients that are pooled into multi-scale feature vectors used to quantify local spatial and
temporal consistency.

Temporal artifacts in edited media interact with spatial structure. Flicker in high-frequency texture
may be more tolerable in peripheral regions or in areas of high motion, whereas flicker in a static central
object can be highly salient [10]. The visual system exhibits temporal contrast sensitivity that depends
on spatial frequency, leading to differential detectability of temporal modulation across scales. This
implies that temporal consistency metrics should weight deviations differently across spatial frequencies
and locations and that purely frame-wise spatial metrics are insufficient to capture perceived quality in
dynamic content.

Another perceptual consideration is the role of attention and task. Observers may be more sensitive
to inconsistencies in semantically important or attended regions, such as faces, text, or user-specified
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Spatial aspect Perceptual cues Example inconsistency

Geometry Perspective convergence, rel-
ative size, occlusion order,
depth-of-field blur

Inserted object has incorrect
scale or vanishing point, or
violates foreground/back-
ground ordering

Photometry / illumination Color balance, shading gradi-
ents, cast shadows, specular
highlights, exposure

Shadow direction mismatch,
too sharp or too soft shadows,
inconsistent noise or exposure

Semantics and context Object identity, affordances,
interactions, scene category

Implausible object placement
(e.g., car on wall), mismatched
style relative to environment

Texture and noise statistics Spatial frequency spectra,
anisotropy, grain level, local
correlations

Over-smoothed foreground in
noisy background, repetitive or
aliased synthesized textures

Salience and region impor-
tance

Faces, text, central objects,
user-selected regions of inter-
est

Minor spatial errors in highly
salient areas dominating per-
ceived quality

Table 2: Key components of spatial consistency and typical ways in which edited regions can violate them.

Temporal factor Description Typical artifact Perceptual considera-
tions

Motion alignment Agreement of object
motion with camera
motion and scene
geometry

Jitter, sliding objects,
inconsistent parallax

High sensitivity for
salient objects and
rigid structures

Illumination evolution Time-varying shad-
ows, reflections, and
shading consistent
with dynamics

Shadows that lag or
lead motion, popping
highlights

Violations visible even
when single frames
look plausible

Shape and structure
coherence

Smooth evolution of
object contours and
topology

Abrupt shape changes,
limb popping, struc-
tural drift

More noticeable for
familiar objects (faces,
bodies)

Texture and noise sta-
bility

Temporal behavior of
high-frequency con-
tent and grain

Texture flicker, tempo-
ral aliasing, unstable
denoising

Sensitivity depends on
spatial frequency and
retinal eccentricity

Temporal masking and
integration

Pooling of information
over temporal windows

Overly local temporal
metrics missing long-
range drifts

Perceptual impact
depends on motion
speed and task

Table 3: Temporal consistency factors that influence perceived plausibility of edited video sequences.

regions of interest. Editing tools often target precisely these regions, making perceptual sensitivity par-
ticularly high. Moreover, when observers expect manipulation, as in certain synthetic or augmented
reality scenarios, they may adopt different criteria than when viewing content presumed to be unedited
[11]. Metrics that aim to predict subjective judgments must therefore consider how salience maps,
semantic segmentation, and task-specific viewing strategies influence the effective weighting of spatial
and temporal inconsistencies.

Finally, perceptual thresholds for detecting inconsistencies can be modeled as just-noticeable-
difference regions in a high-dimensional space of spatiotemporal distortions. In this view, an edited
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Component Notation / operator Role in metric formulation

Video tensor representation +edit, + ref , matrix - ∈ R3 |Ω |×) Encodes frames as a spa-
tiotemporal tensor or matrix
for linear-algebraic manipula-
tion

Spatial and temporal gradients �G , �H , �C , discrete ∇ opera-
tors

Measure local changes in space
and time, form the basis of
derivative-based energies

Feature descriptors 5C ,G ∈ R3 , feature matrices �C Capture low-, mid-, and high-
level structure beyond raw pix-
els

Motion fields DC (G), motion-compensated
sampling locations

Relate corresponding points
across frames for temporal
consistency measures

Gram matrices and covariances �C = �C�
>
C Encode global texture and cor-

relation statistics for style and
texture consistency

Graph structures and Laplacian Graph � = (V, E), Laplacian
!

Model smoothness and prop-
agation of inconsistency over
space-time

Continuous space-time view + (G, H, C) with mG+, mH+, mC+ Links discrete metrics to con-
tinuous differential formula-
tions and physical models

Table 4: Mathematical building blocks used to represent edited sequences and define consistency metrics.

○ ○

○ ○

○ ○

SITEMAP
Graph Laplacian !

Chart-bar
Smoothness energy

�graph = s>!s
Figure 3: Graph-based formulation in which spatiotemporal samples are nodes of a locally connected grid, and a
weighted graph Laplacian transforms a scalar inconsistency field into a smoothness energy that penalizes spatial
and temporal irregularities in edited regions.

sequence is acceptable if the perturbation it introduces lies within a perceptual tolerance region rela-
tive to the unedited sequence, taking into account masking effects from motion, texture, and luminance
variation. This perspective naturally connects to probabilistic models in which metric outputs are inter-
preted as likelihoods or confidence scores for perceptual equivalence. It also highlights the importance
of nonlinear pooling across space and time, because the detection of inconsistencies often depends on
the maximum or local concentration of artifacts rather than on simple global averages [12].
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Energy term Definition sketch Targeted aspect Remarks

Spatial neighborhood
energy �B (C)

Pairwise penalties
k(‖ 5C ,G − 5C ,H ‖2) over
(G, H) ∈ EB

Local spatial smooth-
ness and boundary
transitions

Weights FG,H can
emphasize edited vs.
unedited boundaries

Temporal consistency
energy �C (C)

Motion-compensated
differences
q(‖ 5C+1,G+DC (G ) −
5C ,G ‖2)

Inter-frame coherence
under motion

Requires reliable
motion or robust
penalties for flow
errors

Sequence-averaged
terms �̄B , �̄C

Temporal averages
over C

Global spatial and tem-
poral consistency

Allow adaptive
weighting by content
or motion statistics

Combined metric �tot �tot = U�̄B + V�̄C Joint space-time mea-
sure

Coefficients U, V can
be tuned or learned
from data

Gram-based energy
�gram

Frobenius norm
‖�edit

C − �ref
C ‖2�

Global texture/style
consistency

Can also be extended
across time for tempo-
ral style stability

Graph smoothness
energy �graph

Quadratic form s>!s
over inconsistency
field s

Propagation of local
inconsistencies in
space-time

Connects to spectral
analysis and regular-
ization in optimization

Table 5: Examples of energy terms used to quantify spatial and temporal consistency in edited video.

Design choice Typical options Influence on metric behavior

Input representation Raw RGB frames, gradients,
motion-compensated stacks,
pretrained features

Controls invariance to benign
variations and sensitivity to
structural inconsistencies

Network architecture 2D CNNs with frame pooling,
3D CNNs, transformers over
space-time tokens

Determines receptive field and
ability to capture long-range
temporal dependencies

Supervision signal Pairwise preferences, ratings,
mixed objectives with auxil-
iary tasks

Aligns metric scale with
human judgments and task-
specific priorities

Pooling strategy Average pooling, max or power
pooling, attention-weighted
aggregation

Shapes how local inconsis-
tency maps are summarized
into a scalar score

Multiscale processing Spatial and temporal pyramids,
multi-resolution branches

Enables detection of both fine-
grained artifacts and global
coherence issues

Differentiability and integra-
tion

Fully differentiable pipeline,
differentiable motion modules,
surrogate terms

Allows gradients to flow
into editing models for
optimization-based workflows

Table 6: Design choices for learning-based perceptual metrics and their qualitative impact.

3. Mathematical Formulation of Consistency Metrics

A convenient starting point for formalizing perceptual metrics is to represent a video sequence as a
discrete spatiotemporal tensor. Let the spatial domain be a finite grid

Ω ⊂ Z2
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Numerical issue Underlying cause Mitigation strategy

Unstable gradients Highly nonlinear penalties,
sharp activations, unnormal-
ized features

Use smooth robust losses, nor-
malization layers, and gradient
clipping

Poor conditioning of loss land-
scape

Strong anisotropy of operators
(e.g., �>�), unbalanced scales

Preconditioning, feature nor-
malization, residual formula-
tions, multi-term balancing

Interpolation artifacts in tem-
poral terms

Non-differentiable or coarse
sampling at G + DC (G)

Use bilinear/bicubic interpola-
tion, antialiasing filters, and
flow regularization

High computational cost on
long videos

Dense evaluation over all pix-
els and frames

Importance sampling in space-
time, salience-guided subsam-
pling, patch-based evaluation

Sensitivity to minor perturba-
tions

Large Lipschitz constant or
poorly regularized network
weights

Architectural constraints (e.g.,
spectral normalization) and
explicit robustness regularizers

Differentiation through itera-
tive editors

Backpropagation through long
unrolled optimization or recur-
rent loops

Truncated backpropagation,
implicit differentiation, or
staged surrogate losses

Table 7: Numerical and optimization challenges when using perceptual metrics as objective functions for editing.

with cardinality |Ω| = �, , and let the temporal index set be

T = {1, . . . , )}.

An edited sequence is denoted
+edit =

{
[13] �edit

C

}
C∈T ,

where each frame
�edit
C : Ω→ R3

assigns a color vector to each pixel. An optional reference sequence

+ ref =
{
�ref
C

}
C∈T

may be available in cases where the edit is derived from original footage. A binary mask [14]

"C : Ω→ {0, 1}

can indicate edited regions, with "C (G) = 1 for pixels directly affected by editing operations.
Pixels and frames can be vectorized for linear-algebraic manipulation. For each frame C, the vectorized

image
iC ∈ R3 |Ω |

is formed by stacking color channels and pixels in a fixed order. The sequence can then be regarded as
a matrix [15]

- ∈ R3 |Ω |×) ,

whose columns correspond to frames. This representation facilitates the use of linear operators that act
along spatial or temporal dimensions, such as finite-difference gradients, multiscale transforms, or low-
rank projections. For example, a spatial gradient operator in the horizontal direction can be represented
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Stage Key decisions Example choices Notes

Source dataset design Scene diversity,
motion types, resolu-
tion, duration

Indoor/outdoor, static
vs. dynamic, natural
vs. man-made scenes

Should reflect target
application domains
and viewing scenarios

Editing operation cov-
erage

Types of edits and arti-
fact severity levels

Compositing, inpaint-
ing, style transfer,
relighting, retiming,
generative edits

Include both controlled
synthetic artifacts and
realistic pipeline fail-
ures

Subjective testing pro-
tocol

Comparison vs. rating,
presentation setup,
quality control

Pairwise A/B tests with
replay, calibrated dis-
plays, crowd-sourcing
filters

Design influences reli-
ability and variance of
collected judgments

Statistical analysis Performance metrics
and uncertainty esti-
mates

Rank and linear corre-
lations, preference pre-
diction accuracy, boot-
strap CIs

Separate training, vali-
dation, and test content
to avoid overfitting

Scale calibration Mapping raw scores
to perceptual scales or
acceptance thresholds

Nonlinear regres-
sion to mean opinion
scores, JND-based
margins

Enables interpretable
thresholds for deploy-
ment decisions

Generalization and
stress tests

Cross-dataset and out-
of-distribution evalua-
tion

Testing on new con-
tent, extreme edits,
compression variants

Reveals failure modes
and robustness of the
metric

Table 8: Elements of evaluation protocols for assessing perceptual metrics against human judgments.

as a matrix
�G ∈ R3 |Ω |×3 |Ω | ,

so that
�G iC

approximates the discrete derivative of frame C along the x-axis [16]. Analogous operators

�H and �C

can be defined for vertical and temporal derivatives.
Spatial consistency metrics can be expressed as functionals of spatial derivatives and local feature

statistics. For each frame C and pixel G ∈ Ω, let 5C ,G ∈ R3 denote a feature vector derived from local neigh-
borhoods of �edit

C . The feature extractor can encompass linear filters, multiscale transforms, or learned
convolutional embeddings. A generic spatial consistency energy for frame C can be written as

�B (C) = [17] 1
|EB |

∑
(G,H) ∈EB

FG,H k
(
‖ 5C ,G − 5C ,H ‖2

)
,

where EB is a set of spatial neighbor pairs that encode adjacency relations, FG,H are spatial weights that
may depend on distance or semantic boundaries, and k is a nonnegative function that quantifies incon-
sistency between neighboring features. When features and weights are chosen to emphasize boundaries
between edited and unedited regions, �B (C) captures how smoothly edited content transitions into its
context.

Temporal consistency can be modeled by relating features across successive frames while compen-
sating for motion. Let DC (G) ∈ R2 denote a motion field mapping pixel G in frame C to a corresponding
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Video Edited candidate A
G
(1)
8

Video Edited candidate B
G
(2)
8

Brain Metric network
B\ (·)

Chart-line Preference probability
f
(
B\ (G (1)8

) − B\ (G (2)8
)
)

Users Human pairwise
comparisons A8

Figure 4: Learning-based perceptual metric driven by pairwise comparisons: two edited sequences are scored
by a shared spatiotemporal network whose outputs are mapped to a preference probability and fitted to human
comparison labels.

location in frame C + 1. For each pixel G, define the motion-compensated feature discrepancy [18]

3C (G) =


 5C+1, G+DC (G ) − 5C ,G




2.

A temporal consistency energy for the pair of frames C and C + 1 is then

�C (C) = [19] 1
|Ω|

∑
G∈Ω

q
(
3C (G)

)
,

where q is a penalty that may be robust to small deviations but grows for larger inconsistencies.
Aggregating over time yields a sequence-level temporal consistency measure

�̄C =
1

) − 1

)−1∑
C=1

�C (C) [20] .

Spatial and temporal consistency are not independent, and a metric that aims to reflect perception
often combines them. A simple linear combination of averaged energies can be defined as

�tot = U �̄B + V �̄C ,

where

�̄B =
1
)

)∑
C=1

�B (C),

and U, V ≥ 0 control the relative weighting of spatial and temporal contributions. In practice, these
weights may depend on motion magnitude, scene content, or viewing conditions [21]. For example,
temporal consistency might be given more weight in highly dynamic scenes where motion dominates
perception, while spatial consistency may be more important in nearly static footage.
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Video Input sequence
+ in

COGS Editing operator
Fq

Film Current edit
+edit

Chart-bar Perceptual loss
� (+edit)

SYNC Parameter update
q← q − [∇qL

Figure 5: Integration of a differentiable perceptual consistency metric into an optimization loop, where the editing
operator parameters are updated using gradients of a loss that includes spatial and temporal consistency terms.

Beyond local pairwise interactions, global consistency can be analyzed using linear algebraic con-
structs such as covariance matrices and Gram matrices of features. Let �C ∈ R3×#C be a matrix whose
columns are feature vectors 5C ,G for pixels or patches indexed by G, where #C is the number of sampled
locations in frame C. The spatial Gram matrix

�C = �C�
>
C

encodes inner products between feature channels and captures global texture and correlation statistics
[22]. Differences between Gram matrices of edited and reference frames, or between edited frames over
time, can serve as measures of style and texture consistency. For instance, one can define

�gram =
1
)

)∑
C=1



�edit
C − �ref

C



2
�
,

where ‖ · ‖� denotes the Frobenius norm. Variants that compare Gram matrices across time capture
whether global texture statistics evolve smoothly or exhibit unnatural temporal fluctuations [23].

Graph-based formulations provide a bridge to discrete mathematics and spectral analysis. Consider a
graph � = (V, E) whose vertices represent spatiotemporal locations labeled by (G, C) and whose edges
connect spatial or temporal neighbors. Let BG,C ∈ R denote a scalar field measuring local inconsistency,
such as the magnitude of a feature difference. A smoothness energy on the graph can be written as

�graph =
1
2

∑
( (G,C ) , (H,B) ) ∈E

F (G,C ) , (H,B)
(
BG,C − BH,B

)2
,

where F (G,C ) , (H,B) are edge weights that may reflect spatial distance, temporal separation, or feature
similarity. This energy can be expressed as a quadratic form [24]

�graph = s>!s,
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Content, edits, masks

Users Subjective experiments
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Learn \ from data
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Correlation, scale mapping

Film Deployment
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Figure 6: Experimental protocol for evaluating and deploying perceptual consistency metrics, from curated datasets
and subjective experiments through metric training, validation and calibration, to use as both an evaluation tool and
an optimization objective in editing systems.

where s stacks all BG,C into a vector and ! is the graph Laplacian. Spectral properties of ! characterize
how inconsistency signals propagate over space and time, which is relevant when metrics are used as
regularizers in optimization.

Differential operators defined on continuous space-time provide an alternative perspective that
connects to tensor calculus. Viewing the video as a function

+ : Ω2 × [0, )2] → R3,

with continuous spatial domain Ω2 and continuous time interval [0, )2], one can consider the spatiotem-
poral gradient tensor [25]

∇+ =
(
mG+, mH+, mC+

)
, [26]

and define consistency energies that penalize deviations from smoothness or from an underlying phys-
ical model. For instance, in regions expected to follow brightness constancy along motion trajectories,
temporal derivatives along the flow field can be used to measure inconsistency. Discrete metrics arise
by sampling and approximating these derivatives with finite differences, linking continuous and discrete
formulations.

4. Learning-Based Perceptual Metrics

While hand-designed functionals of derivatives, features, and graph structures provide interpretable
metrics, their parameters must be chosen to align with human judgments. Learning-based perceptual
metrics adopt a parametric mapping from edited sequences to scalar scores and fit this mapping using
subjective data [27]. Let G denote an edited video, represented by its tensor of pixel values or by derived
features, and let B\ (G) ∈ R be a metric parameterized by \. The goal is to learn \ such that the ordering
induced by B\ correlates with perceived spatial and temporal consistency for a variety of edits.

Human annotations are often collected in the form of pairwise comparisons. Each sample consists of
a pair (G (1)

8
, G
(2)
8
) of edited sequences and a binary label A8 ∈ {0, 1} indicating which sequence is judged
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more consistent by observers. A probabilistic model can be used to connect metric scores to comparison
outcomes. A common choice is a logistic model,

P(A8 = 1) = f
(
[28]B\ (G (1)8

) − B\ (G (2)8
)
)
,

where

f(I) = 1
1 + e−I

is the sigmoid function. The parameters \ are estimated by minimizing the negative log-likelihood

! (\) = −
#∑
8=1

logP\ (A8),

possibly with regularization terms to control complexity [29]. This formulation encourages the learned
metric to assign higher scores to sequences that are more often judged consistent.

The mapping B\ is typically implemented by a neural network that processes spatiotemporal data.
For spatial consistency, networks operating on individual frames or on spatial patches can be used, with
temporal context provided implicitly via aggregation of scores across frames. For temporal consistency,
architectures that explicitly process sequences, such as three-dimensional convolutions or attention
mechanisms over space-time tokens, can model long-range temporal dependencies. The input to the net-
work may consist of raw frames, derivatives, motion-compensated differences, or higher-level features
extracted from networks trained for recognition tasks [30]. The choice of representation influences the
ability of the metric to generalize across content and editing operations.

Multiscale processing is particularly important when learning perceptual metrics for edited media.
Spatial pyramids and temporal pyramids allow the network to compute descriptors at different resolu-
tions and frame rates, capturing both fine-grained artifacts such as edge halos and coarse artifacts such
as inconsistent global illumination or motion. A metric can internally produce intermediate representa-
tions that approximate human sensitivity curves across spatial and temporal frequencies, with learnable
pooling strategies that emphasize salient inconsistencies. For example, the network may be trained to
compute local inconsistency maps and then pool them using nonlinear operations such as maxima,
powered means, or attention-weighted averages to produce a single scalar score [31].

From a probabilistic standpoint, a learned metric defines a latent perceptual scale on which edited
sequences are embedded. Under the logistic comparison model, differences in scores approximate log-
odds of preference for one sequence over another in terms of spatial and temporal coherence. This
interpretation suggests connections to psychometric functions and just-noticeable-difference thresholds.
By analyzing the distribution of score differences for pairs of sequences that observers judge as indistin-
guishable, one can estimate a margin around zero within which changes in the metric are not perceptually
significant. This margin can be used to assess the reliability of metric differences when comparing
editing methods.

Training data for learning-based metrics need to cover a range of editing operations and conditions
[32]. Sequences may vary in resolution, duration, camera motion, and scene content, while edits may
include compositing, inpainting, stylization, retiming, and generative synthesis. The metric must learn
to focus on inconsistencies that are perceptually important while ignoring benign variations such as
small style changes that do not disrupt coherence. To reduce dataset bias, training protocols can balance
examples across content types and editing categories, and can include both extreme and subtle artifacts.
Data augmentation techniques, such as synthetic perturbations of motion fields or controlled variations
in lighting, can enrich the set of inconsistencies observed during training.

For deployment in optimization-based editing pipelines, learning-based metrics must be differen-
tiable with respect to the edited content [33]. This requirement constrains both network architecture and
preprocessing steps. For instance, motion estimation modules used within the metric should be differ-
entiable if they are part of the computational graph, or approximated by fixed operators whose gradients
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can be computed analytically. Gradient flow from the metric back to the editing model can be analyzed
using matrix calculus, with the Jacobian of the metric with respect to input pixels composing with the
Jacobian of the editing transformation. Stability and conditioning of this composite mapping influence
the efficiency of gradient-based optimization and may motivate the design of normalization layers or
residual connections within the metric network.

5. Numerical Analysis and Optimization Aspects

When perceptual metrics are used not only for evaluation but also as objective functions for optimizing
editing algorithms, numerical considerations become central [34]. Let Fq denote an editing operator
parameterized by q, mapping an input sequence + in and optional auxiliary inputs to an edited sequence

+edit = Fq
(
+ in) .

A perceptual metric

� (+edit)

is then used as part of a loss function

L(q) = �
(
Fq (+ in)

)
[35] + '(q),

where '(q) represents regularization terms. Gradient-based optimization updates q according to esti-
mates of ∇qL, which requires efficient and stable computation of gradients of the metric with respect
to its input.

If the metric is expressed in terms of linear operators and pointwise nonlinearities, its gradient struc-
ture can be analyzed using standard tools from linear algebra and multivariate calculus. For instance,
consider a simplified spatial consistency term

�B (+edit) = 1
)

)∑
C=1

1
|Ω|

∑
G∈Ω

k
(
[36]‖∇�edit

C (G)‖2
)
,

where ∇ is a discrete gradient operator and k is differentiable. In matrix form, with iC representing frame
C, the gradient operator becomes a matrix � such that

�iC

stacks spatial derivatives. The gradient of �B with respect to iC is then

∇iC �B =
1

) |Ω|�
>6C ,

where 6C is a vector whose entries are [37]

6C ,: = k′
(
‖(�iC ): ‖2

) (�iC ):
‖(�iC ): ‖2

,

with : indexing spatial locations. This expression illustrates how the transpose of the gradient operator
propagates local inconsistency sensitivities back to pixel intensities. Stability depends on properties of
�>�, such as its eigenvalue distribution, which can be analyzed using spectral methods [38].
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Temporal consistency terms involve similar structures but incorporate motion compensation. For a
metric component

�C (+edit) = 1
) − 1

)−1∑
C=1

1
|Ω|

∑
G∈Ω

q
(
‖�edit

C+1 (G + DC (G)) − �edit
C (G)‖2

)
, [39]

gradients must flow through interpolation at noninteger locations G+DC (G). Numerical differentiation in
this setting typically relies on spatially differentiable interpolation schemes, such as bilinear or bicubic
interpolation, so that derivatives with respect to pixel values and motion vectors are well defined. Dis-
cretization choices for interpolation affect both smoothness and computational cost, and may introduce
anisotropies or directional biases in gradient propagation.

The conditioning of the metric influences optimization dynamics. If the metric is highly sensi-
tive to small changes in certain directions of the input space, the Hessian of the loss may exhibit
large eigenvalue ratios, leading to slow convergence or instability for gradient-based methods [40].
Preconditioning strategies, such as normalizing features, using perceptually motivated transforms, or
incorporating residual connections, can ameliorate these issues by reshaping the optimization landscape.
For learned metrics implemented by neural networks, techniques such as weight normalization, spec-
tral normalization, and carefully chosen activation functions can contribute to more predictable gradient
magnitudes.

Computational efficiency is crucial for metrics applied to high-resolution, long-duration sequences.
Direct evaluation of spatiotemporal energies over all pixels and frames may be prohibitively expensive.
Sampling strategies can reduce cost while preserving metric reliability. For example, one can subsample
frames in time according to motion magnitude, sampling more densely in segments with rapid motion
or complex edits and more sparsely in static segments [41]. In space, sampling can be guided by salience
maps, edit masks, or gradient magnitudes, focusing computation on regions where inconsistencies are
more likely to be perceptually salient. From a numerical analysis perspective, these strategies can be
viewed as Monte Carlo approximations to integrals over space-time, with variance that depends on the
sampling distribution.

When metrics are used to compare editing algorithms, numerical stability of the metric itself becomes
important. Small perturbations of input sequences due to compression, resampling, or platform-specific
processing should not cause large fluctuations in metric scores. This robustness can be quantified by
Lipschitz-type bounds [42]. A metric � is Lipschitz continuous with constant ! if��� (+1) − � (+2)

�� ≤ ! ‖+1 −+2‖, [43]

for an appropriate norm on sequences. For linear operators combined with bounded nonlinearities, such
bounds can be derived from operator norms of the constituent matrices and derivatives of nonlinear
functions. In learned metrics, explicit regularization or architectural constraints can be used to encourage
small Lipschitz constants, improving robustness to minor perturbations.

Finally, integrating perceptual metrics into optimization loops for editing can require solving large-
scale nonlinear optimization problems. In some scenarios, the editing operator Fq is itself defined
implicitly through iterative procedures, such as solving a variational problem or running a recurrent
network. In such cases, differentiating through Fq involves unrolling iterations or using implicit dif-
ferentiation, each with its own numerical trade-offs. Memory and computational constraints may limit
the extent to which perceptual metrics can be evaluated during optimization, motivating approxima-
tions, surrogate losses, or multistage schemes in which simpler metrics guide early iterations and more
complex metrics refine later stages.
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6. Evaluation Protocols and Experimental Considerations

The practical value of perceptual metrics for spatial and temporal consistency depends on how well they
predict human judgments across diverse editing scenarios [44]. Designing evaluation protocols requires
careful consideration of dataset construction, subjective testing methodology, statistical analysis, and
the relationship between metric scores and perceptual scales. Because edited media encompass a wide
variety of operations, content types, and viewing conditions, evaluation protocols must capture this
diversity while remaining tractable [45].

Dataset construction begins with selecting source footage that spans different scene categories,
including indoor and outdoor environments, natural and man-made structures, and varying levels of
motion and complexity. Editing operations can then be applied to this footage using a range of algorithms
and parameter settings, producing edited sequences with varying degrees and types of spatial and tem-
poral inconsistency. It is useful to include both targeted artifacts, such as deliberate shadow mismatches
or motion jitter, and naturally occurring artifacts from practical editing pipelines [46]. Annotated masks
indicating edited regions, motion fields, and semantic segmentations can facilitate analysis of how metric
performance varies across spatial locations and object categories.

Subjective evaluation protocols often rely on pairwise comparison or rating experiments. In pairwise
comparisons, observers are shown two edited sequences side by side or in succession and asked which
appears more spatially and temporally consistent relative to the underlying scene. This setup aligns well
with the training paradigm for learning-based metrics and tends to produce reliable ordinal data. In rating
experiments, observers assign scores to single sequences on a discrete or continuous scale representing
perceived consistency or overall quality [47]. Rating experiments can be more efficient in terms of the
number of sequences evaluated but may be more sensitive to individual differences in scale use.

Experimental design choices, such as randomized presentation order, viewing duration, and display
calibration, influence the variability and bias in subjective data. For temporal artifacts, it is important
that sequences can be replayed and that playback is smooth and synchronized, as timing jitter or dropped
frames can confound judgments. Viewing distance and display size should be controlled to the extent
possible, particularly when evaluating artifacts that depend on spatial resolution or when simulating
specific usage scenarios, such as viewing on mobile devices versus large screens. When crowd-sourcing
is used, additional quality-control mechanisms are needed to filter unreliable responses.

Once subjective data are collected, metric performance is typically assessed through correlation and
classification measures [48]. Rank-based correlations between metric scores and mean opinion scores
provide a measure of monotonic agreement, while linear correlations can indicate how well a metric
captures absolute differences in perceived quality. For pairwise preference data, one can compute the
probability that metric differences correctly predict human choices. Confidence intervals for these statis-
tics can be estimated using bootstrap resampling, providing a sense of variability due to limited sample
sizes. Care must be taken to avoid overfitting when metrics are learned on part of the data and evaluated
on held-out sets with different content or editing operations.

Evaluation protocols can be refined by analyzing performance in specific regimes [2]. For exam-
ple, one can examine how metric sensitivity to temporal inconsistencies varies with motion magnitude,
scene complexity, or the duration of sequences. Similarly, performance on spatial consistency can be
studied separately for different semantic categories, such as faces, text, or natural textures, where per-
ceptual priorities differ. This type of stratified analysis can reveal systematic biases, such as a metric that
performs well for global color consistency but poorly for geometric alignment, and can suggest targeted
improvements or combinations of metric components.

Another consideration is the calibration of metric scales. Raw metric outputs may live on arbitrary
numeric ranges and may not be directly interpretable as perceptual distances or probabilities [49]. Cali-
bration procedures, such as fitting nonlinear mappings between metric scores and mean opinion scores
or between score differences and preference probabilities, can make outputs more interpretable and com-
parable across metrics. These mappings can also be used to define threshold values corresponding to
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specific perceptual criteria, such as the score above which edits are likely to be acceptable for a certain
proportion of viewers.

Finally, evaluation protocols should consider robustness and generalization. Metrics trained or tuned
on one dataset may degrade when applied to different content, editing styles, or viewing conditions.
Cross-dataset evaluations, where metrics are trained on one distribution and tested on another, are infor-
mative about generalization. Stress tests that introduce unusual artifacts, extreme edits, or distortions
outside the training distribution can reveal failure modes [50]. In practical deployment, metrics may need
to operate under constraints such as limited resolution previews or compressed streams, so evaluations
that account for these constraints are also relevant.

7. Conclusion

Perceptual metrics for evaluating spatial and temporal consistency in edited visual media play a cen-
tral role in both assessing and guiding modern editing pipelines. Unlike traditional distortion metrics
that focus primarily on fidelity to a fixed reference, these metrics must account for the intentional intro-
duction of new content and the complex ways in which human observers judge plausibility. Spatial
consistency involves geometric, photometric, and semantic alignment of edited regions with their sur-
roundings, while temporal consistency involves coherent evolution of these properties across frames
under constraints of motion perception and temporal integration.

The discussion above has outlined how edited sequences can be represented as spatiotemporal tensors
and how spatial and temporal consistencies can be quantified using combinations of derivatives, features,
and graph structures [51]. Linear-algebraic formulations, such as Gram matrices and graph Laplacians,
provide interpretable measures of global and local coherence, while differential and tensorial viewpoints
connect discrete metrics to continuous models of motion and illumination. Probabilistic formulations,
particularly those based on pairwise comparisons, link metric outputs to human judgments and support
the learning of parametric metrics that adapt to empirical data.

Learning-based approaches, typically implemented with neural networks that process spatiotemporal
features, allow metrics to capture complex perceptual cues across scales and content types. Numerical
analysis shows how the structure of these metrics influences gradient flow and optimization behavior
when metrics are integrated into editing algorithms. Stability, robustness, and computational efficiency
emerge as important design considerations, especially for high-resolution video applications where
metrics must be evaluated repeatedly during iterative optimization [52].

Evaluation protocols grounded in subjective experiments provide the empirical basis for validating
and comparing perceptual metrics. The design of datasets, annotation strategies, and statistical anal-
yses affects how well metrics can be judged and improved. Stratified evaluations reveal strengths and
weaknesses across editing operations, content categories, and motion regimes, guiding the refinement of
metric architectures and training procedures. Calibration of metric scales enhances interpretability and
supports practical decisions about acceptable levels of spatial and temporal inconsistency in different
application contexts.

Future work in this area can explore richer perceptual models that integrate attention, task, and con-
text, as well as metrics that explicitly account for uncertainty and variability across observers. As editing
tools continue to evolve and generate increasingly complex modifications, the design and analysis of per-
ceptual metrics for spatial and temporal consistency will remain a relevant topic, requiring a combined
perspective from vision science, mathematics, machine learning, and practical evaluation methodology
[53].
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