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Abstract

As UAS operations expand in density and complexity, detect-and-avoid capabilities are expected to provide an
acceptable level of risk with respect to mid-air collisions, while remaining compatible with existing traffic and
scalable to emerging concepts such as dense urban operations. Evaluating detect-and-avoid performance under
both nominal and off-nominal encounter geometries requires carefully constructed methodologies that integrate
high-fidelity simulation, controlled live-flight experiments, and rigorous statistical analysis. This paper examines
test and evaluation constructs for detect-and-avoid systems with emphasis on harmonizing simulated encounter sets
and live scenarios, enabling quantitative assessment of detection performance, maneuver guidance, interoperabil-
ity, and residual risk. The discussion focuses on systematic strategies for constructing encounter models, defining
operational scenarios, specifying performance metrics, and integrating measurement uncertainty, without relying
on a single environment or data source. A particular emphasis is placed on traceability between modeled encounters
and operational use cases, including those characterized by sparse surveillance, heterogeneous equipage, and mixed
levels of automation. The paper outlines approaches that connect algorithmic behavior with safety-relevant indica-
tors such as conflict rate, loss-of-well-clear frequency, and collision probability, in a way that allows incremental
validation and refinement. The resulting framework enables transparent interpretation of detect-and-avoid perfor-
mance across simulated and live encounter campaigns while remaining adaptable to different system architectures
and operational concepts.

1. Introduction

Detect-and-avoid functions for uncrewed aircraft systems are intended to support safe integration into
airspace where conventional see-and-avoid responsibilities have historically been assigned to onboard
human pilots [1]. The transition from pilot-centric visual acquisition to sensor- and algorithm-based
detect-and-avoid induces structural changes in how conflicts are observed, predicted, and resolved.
Performance evaluations that were once implicitly tied to human capability must now be formalized in
terms of measurable detection probabilities, trajectory prediction accuracy, guidance effectiveness, and
the resulting effect on collision risk. These evaluations must be conducted under operationally plausible
encounter geometries that span cooperative and non-cooperative intruders, surveillance outages, latency,
track fragmentation, and maneuver uncertainty.

Developing systematic test and performance evaluation methods for such systems presents several
challenges [2]. Operationally representative encounters are rare in routine traffic and potentially haz-
ardous to replicate directly; safety-critical edge cases often occupy small volumes of the encounter state
space yet dominate risk; and detect-and-avoid implementations exhibit complex couplings among sens-
ing, estimation, logic, and guidance. A single methodology, whether purely simulation-based or purely
experimental, will not reliably span this landscape. Instead, a combination of simulated encounter sets,
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hardware-in-the-loop configurations, and controlled live scenarios is needed, along with mathematical
structures that enable consistent interpretation of results across these contexts.

The evaluation problem is not restricted to detection range or guidance responsiveness taken in iso-
lation. Detect-and-avoid functions interact with communication protocols, air traffic separation minima,
latency in command-and-control links, and pilot or autonomy behavior in both ownship and intruder
aircraft [3]. Consequently, performance must be evaluated across multiple layers: encounter geometry
generation, sensing and tracking, conflict detection and trajectory prediction, maneuver selection, and
closure back to airspace-level risk measures. Capturing these layers requires test constructs that define
measurable quantities at each stage while ensuring compatibility with higher-level safety arguments and
regulatory performance expectations.

This paper develops a structured view of these constructs for detect-and-avoid systems in both sim-
ulated and live encounter scenarios. The aim is to provide a neutral yet explicit framework that can
accommodate different sensor modalities, algorithmic architectures, and operational environments. The
subsequent sections discuss the operational and regulatory context within which detect-and-avoid sys-
tems operate, formulate encounter models and scenario generation methods suited for both simulation
and experimentation, describe algorithmic abstractions amenable to analysis, outline simulation-based
and live test methodologies, and propose statistical techniques for synthesizing evidence into perfor-
mance indicators relevant to safety assessments [4]. The discussion is organized to avoid prescribing
a single design but instead to isolate fundamental elements required for traceable and reproducible
evaluation.

Table 1. Scope and Core Elements.

Aspect

Description

Role in Paper

Operational shift

Evaluation focus

From human see-and-avoid to
UAS detect-and-avoid
Use of simulated and
encounters

live

Motivates structured perfor-
mance evaluation

Links evidence across test envi-
ronments

Table 2. Evaluation Drivers.

Driver Description Implication
Airspace integration ~ Mixed crewed and uncrewed Requires compatible detect-and-
operations avoid behavior

System coupling

Sensors, logic, guidance, human
or autonomy

Necessitates multi-layer perfor-
mance metrics

Table 3. Key Foundational Concepts.

Concept Summary Evaluation Use
Well-clear region Geometric-temporal exclusion Basis for loss-of-well-clear indi-
volume cators

Decision surface

Boundary in estimated state
space

Determines alert sensitivity and
stability
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Table 4. Margins and Scenario Equivalence.

Concept Summary Evaluation Use

Alert margin Time between first alert and pro-  Feasibility of avoidance maneu-
jected boundary entry vers

Scenario equivalence ~ Matching key kinematic Aligns simulated and live
descriptors encounter data

Table 5. Operational Context Dimensions.

Context Characteristics Implication

Controlled airspace Structured routes, cooperative Emphasis on interoperability
surveillance and nuisance control

Uncontrolled Heterogeneous, non- Emphasis on coverage and

airspace cooperative traffic robustness

Table 6. Encounter Modeling Elements.

Element Description Purpose

Relative state Position and velocity in local Defines encounter geometry
frame

Dynamics model Kinematic or stochastic evolu- Generates trajectories for testing
tion

Table 7. Scenario Design Considerations.

Aspect Description Evaluation Role

Coverage Range of miss distances and Samples nominal and stressing
approach angles cases

Importance sampling  Biased selection with weights Supports  rare-event  perfor-

mance estimation

Table 8. Functional Mapping of Components.

Component Input Output

Detection and track- Sensor measurements Estimated intruder states
ing

Alerting logic Estimated encounter states Alert levels and triggers

2. Foundational Performance Concepts for Detect-and-Avoid Evaluation

A structured evaluation of detect-and-avoid performance for uncrewed aircraft systems requires explicit
articulation of the performance concepts that connect algorithmic behavior, sensing capabilities,
encounter geometries, and resulting safety and operational effects. Before specifying encounter models
or test campaigns, it is necessary to define the functional roles of detect-and-avoid subsystems in terms
that admit quantification, are compatible with diverse architectures, and can be consistently interpreted
across simulated and live scenarios. This section introduces foundational concepts underpinning such
evaluations, including formal representations of well-clear maintenance and collision avoidance func-
tions, the decomposition of performance into observables, the incorporation of uncertainty and latency,
and the mapping from local detect-and-avoid outcomes to aggregate indicators of acceptability within
a given operational context. [5]

At the core of detect-and-avoid evaluation lies the notion of preserving a well-clear volume between
ownship and intruder aircraft under realistic sensing and maneuvering constraints. Let r(t) denote the
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Table 9. Prediction and Guidance Aspects.

Function Description Evaluation Focus

Conflict prediction Future relative state assessment  Timeliness of hazard indication

Guidance selection Maneuver under operational Separation maintenance and sta-
constraints bility

relative position vector between ownship and intruder in a local horizontal-vertical frame and v(t)
the corresponding relative velocity. A minimal representation treats r(t) and v(t) as trajectories in a
continuous state space subject to aircraft dynamics and external disturbances. A well-clear definition
imposes geometric and temporal constraints that delineate states considered operationally acceptable.
Although specific thresholds may vary by airspace class or concept of operations, the evaluation
framework views them as parameters defining an exclusion region in the relative state space [6]. A detect-
and-avoid implementation must, with high consistency, prevent trajectories from entering this region
when reasonably avoidable given the information and maneuver authority available. The evaluation task,
therefore, is to characterize the conditions under which such prevention is achieved or not achieved,
rather than to embed any particular threshold selection as an intrinsic property of the methodology.

To formalize these ideas while maintaining concise expressions, consider a loss-of-well-clear
indicator function L operating on the relative state at time t. For example, one may write

L) = [7] 1 ifr(z) e w,

0 otherwise,
where W is the chosen well-clear region. In this formulation, detect-and-avoid performance can be
partially summarized through probabilities or frequencies associated with events such as the first time
t at which L(t) becomes 1, conditional on specified encounter classes and system configurations.
However, the binary indicator alone is too coarse to support nuanced evaluation, as it does not reflect
proximity to the boundary, available time margins, or the quality of earlier advisories. Accordingly,
the framework introduces continuous metrics, such as predicted time to boundary crossing, minimum
separation achieved given advisories and responses, and stability of alerts, each defined with reference
to L(t) but conveying more detailed information about system behavior in the approach to potential
loss-of-well-clear.

Detect-and-avoid algorithms do not operate on the true state directly but on estimates formed from
sensor data, communication links, and filtering processes [8]. Let 7(¢) and ¥(¢) denote the estimated
relative position and velocity available to the detect-and-avoid logic, and let €, (¢) and €, (t) represent
associated estimation errors. These quantities are influenced by sensor noise, biases, latency, track
association decisions, and possible gaps in surveillance coverage. A generic expression for the estimated
state in terms of true state and error can be written as

(1) = r(1) + (1),

with an analogous relation for velocity. Performance concepts must therefore be framed in a way that
distinguishes between failures attributable to fundamental limitations in the information set and those
attributable to algorithmic choices given that information [9]. For instance, a scenario in which the
intruder remains undetected due to low radar cross section or lack of cooperative equipage presents
different interpretive implications than a scenario in which the intruder is tracked but the logic delays
or suppresses alerts despite converging trajectories.

A foundational construct is the detect-and-avoid decision surface: a boundary in the space of estimated
encounter states that separates regions where alerts or maneuvers are commanded from regions where
no action is taken. Abstractly, let x(t) denote a feature vector derived from 7(¢), ¥ (¢), and possibly higher-
order predictions or uncertainty measures. The detect-and-avoid logic can be viewed as computing a
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decision variable D(x(t)) and comparing it to calibrated thresholds. A simplified representation is

a(r) = [10] 1 {fD(X(t)) > 1,
0 if D(x(r)) <n,
where a(t) indicates whether a designated alert or advisory is active and 7 is a threshold selected
to balance sensitivity and robustness. Although actual systems exhibit multiple alert levels and more
complex hysteresis, this abstraction suffices for defining conceptual performance measures. The location
and shape of this decision surface influence detection timeliness, susceptibility to nuisance alerts, and
resilience to noise and latency. Evaluation methodologies must be capable of probing the behavior of
D(x(t)) under varied encounter and sensor conditions, even when its exact implementation is proprietary
or embedded.

Latency and update rate are central performance determinants [11]. Information used by detect-and-
avoid logic may be delayed relative to the true state due to sensor processing, data fusion, network
transmission, and cockpit or autopilot implementation. Let A represent an effective decision latency.
Conceptually, the logic bases its assessments at time t on a state that approximates the true state at time
t — A. For an approaching intruder, this compresses the available time margin between first reliable
detection and potential loss-of-well-clear. A simple indicator of effective margin at initial alert time ¢,
can be expressed as a function of relative kinematics: [12]

M =t owe —ta,

where 1 owc is the time at which L(t) would first become 1 in the absence of any avoidance maneuver.
The distribution of M across encounters, conditional on scenario class and system configuration, forms
a key metric: larger positive margins indicate earlier alerts, while small or negative margins indicate
advisories that may be infeasible to execute in time. An evaluation framework must capture how A,
sensing range, and decision surface parameters jointly influence this margin distribution, and how
execution variability further modifies realized separation outcomes.

Another foundational concept is the operational envelope of detect-and-avoid applicability. UAS
may operate in regions with conflicting constraints on altitude, speed, minimum separation, and traffic
complexity [13]. Detect-and-avoid performance must be interpreted with respect to the envelope within
which the system is intended and demonstrated to function. Let O denote a set of operating conditions
parameterized by airspeed ranges, altitude bands, equipage assumptions, and surveillance infrastructure.
Tests conducted outside O can be informative for robustness assessment but should not be conflated with
core performance claims. Within the framework, O acts as a conditioning domain: encounter models,
sensor models, and performance metrics are explicitly tied to specified subsets of O, avoiding implicit
extrapolation.

To support integration of simulated and live testing, the concept of scenario equivalence is introduced.
Two encounters, one simulated and one flown, are considered equivalent for a given performance
question if they match, within defined tolerances, on a set of summary descriptors such as initial range,
relative bearing, closure rate, altitude separation, and equipage attributes. Let s denote a vector of such
descriptors. For encounter i, either simulated or live, define s_i as its descriptor vector [14]. Equivalence
for evaluation purposes is then approximated by proximity of s_i to a target scenario descriptor s X
, measured using a suitable norm with application-specific tolerances. While this notion does not equate
full trajectory histories, it enables alignment of heterogeneous data sources when estimating metrics
that depend primarily on these descriptors, such as distributions of alert margins or false alert rates in
particular geometric classes.

Uncertainty treatment is foundational to any credible performance evaluation. Encounter models,
sensor characterizations, behavioral response models, and environmental conditions all carry uncertain-
ties that propagate into performance metrics. Within this section, the emphasis is on conceptual roles
rather than specific numerical values [15]. One may regard any performance metric 6 as a function of
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underlying uncertain parameters &, so that

0= f().

Here, ¢ aggregates quantities such as encounter rate parameters, intruder speed distributions, latency
distributions, and compliance levels with advisories. Evaluation seeks not a single point estimate of
0, but a characterization over the plausible range of &, leading to intervals or envelopes that reflect
epistemic and aleatory uncertainty. Tests and simulations are then interpreted as observations providing
information about ¢ or directly about 8, and the methodology prescribes how evidence from different
sources modifies uncertainty without assuming complete certainty in any single modeling element. [16]

A further foundational element is the separation between algorithm-internal measures and externally
observable performance. Many detect-and-avoid implementations compute internal quantities such
as probabilistic conflict metrics, look-ahead risk measures, or optimization costs. While these are
informative for design and tuning, evaluation in operationally relevant terms must be based on quantities
that can be independently observed or reconstructed, such as recorded alert times, executed maneuvers,
and realized separations. The framework encourages mapping internal measures to observable surrogates
whenever possible, but it treats internal measures as auxiliary, not primary, evidence for safety or
effectiveness [17]. This distinction is important when comparing different systems whose internal logic
may be inaccessible; evaluation must rest on transparent, externally verifiable indicators.

Interoperability with surrounding airspace users provides another conceptual dimension. Detect-
and-avoid advisories executed by UAS should not systematically induce conflicts or unacceptable
compressions of separation with third-party aircraft. This leads to the notion of compatibility metrics:
measures that assess whether typical advisory patterns remain consistent with standard right-of-way
rules, expected maneuver conventions, and controller or pilot expectations. Although detailed modeling
of multi-actor interactions resides in subsequent sections, the foundational concept is that detect-and-
avoid evaluation extends beyond dyadic ownship-intruder geometry to include the broader traffic context
[18]. Test designs incorporating multiple intruders or background traffic must therefore define metrics
that capture the degree to which detect-and-avoid advisories remain compatible with that context, both
in simulation and live scenarios.

Finally, these foundational concepts collectively motivate requirements for traceability in any test
and evaluation campaign. For each reported metric, the underlying encounter definitions, operating
conditions, sensor and latency assumptions, decision surface characteristics, and uncertainty treatments
must be identifiable and, to the extent possible, reproducible. This does not imply that all such elements
are known exactly, but rather that their roles are explicitly represented in the structure of the evaluation.
When tests are extended to new airspace classes, new sensor technologies, or alternative detect-and-avoid
algorithms, the same conceptual scaffolding can be applied: define well-clear and alerting concepts,
specify the operational envelope, characterize sensing and latency, identify decision structures, construct
scenario equivalences between simulation and live data, and propagate uncertainties in a disciplined
manner [19]. Establishing these foundations early in the evaluation process enables subsequent sections
of the study to focus on specific model choices, encounter sets, simulation architectures, live test
designs, and statistical analyses, while maintaining conceptual continuity and interpretability across
diverse detect-and-avoid implementations and operational concepts.

3. Background on UAS Detect-and-Avoid Operational Context

Detect-and-avoid systems for UAS are generally structured to fulfill two complementary functions:
remain-well-clear maintenance and collision avoidance in last-resort conditions. These functions must
operate within surveillance capabilities that may include automatic dependent surveillance, transponder-
based systems, primary radar, non-cooperative sensors, or combinations thereof. The detect-and-avoid
logic typically observes a processed track picture, subject to latency, measurement noise, track swaps,
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and dropouts, and issues alerts or maneuver guidance according to defined thresholds on time to
loss-of-well-clear, predicted miss distance, or probabilistic indicators.

The operational context constrains acceptable performance characteristics [20]. In controlled
airspace, UAS may operate with cooperative surveillance and structured trajectories, which influence
the encounter model toward relatively constrained speed and altitude distributions. In lower-level or
uncontrolled environments, intruders can include small uncrewed aircraft, general aviation traffic, or
non-cooperative objects, for which surveillance participation may be low and dynamic behavior less pre-
dictable. These differing contexts induce distinct encounter priors, traffic densities, and closure rates that
any evaluation framework must explicitly capture, rather than assuming a single canonical encounter set.

A central notion is the mapping from detect-and-avoid performance to safety objectives [21]. Safety
arguments often reference bounds on the rate of mid-air collisions per flight hour or per operation, and on
the frequency of losses of well clear. Detect-and-avoid evaluations must therefore deliver intermediate
metrics that can be translated into these system-level objectives. Metrics of interest include probability
of timely detection of an impending loss-of-well-clear, probability of nuisance or unnecessary alerts in
benign encounters, rate of maneuver advisories that are operationally feasible, and the residual probabil-
ity that the logic fails to prevent a loss-of-well-clear or collision given a threatening encounter. Because
detect-and-avoid decisions are typically executed in closed-loop with pilot or autopilot responses, these
metrics are conditioned not only on algorithmic outputs but also on behavioral models of response
delay, adherence, and variability.

In addition, detect-and-avoid systems are deployed in layered architectures that include procedural
mitigations, geofencing, altitude reservations, and traffic flow constraints [22]. The incremental contri-
bution of detect-and-avoid relative to these other mitigations must be evaluated without overstating its
role. This motivates methods that can estimate how much incremental risk reduction is achieved under
clearly specified assumptions while acknowledging uncertainties in underlying encounter models, sensor
performance, and operational behavior. Addressing such uncertainties requires statistical formulations
that are compatible with both simulation and live data, allowing performance evidence from different
sources to be combined.

Within this context, test and performance evaluation methodologies must be designed so that any
chosen scenario set, simulation configuration, or live campaign can be traced back to assumptions
about airspace structure, traffic behavior, equipage levels, and rules of the air. Without such traceability,
performance estimates risk being either optimistic or pessimistic in ways that are difficult to assess [23].
The following sections develop encounter modeling, algorithmic abstractions, and evaluation workflows
that explicitly connect these assumptions to measurable outcomes.

4. Encounter Modeling and Scenario Generation

Encounter modeling formalizes the stochastic processes that generate relative states between an ownship
equipped with detect-and-avoid and one or more intruder aircraft. Let the relative state at time t be
represented as a vector

x(1)
[24]y()
h(t)

vx (1)
Vy (1)
[25]va (1)

z(1) =

where horizontal components describe relative position and velocity in a local frame and h denotes
relative altitude. An encounter model specifies probability laws over initial states and over subse-
quent evolution of z(t) under assumptions on pilot behavior, flight plan structures, and environmental
disturbances.



8 ispiacademy

A practical approach is to generate initial relative positions and headings from traffic density fields
and route structures, then propagate trajectories using simple kinematic or stochastic dynamics with
bounded accelerations. For example, one may adopt a discrete-time evolution of the form [26]

z(t + Ar) = Fz(t) + w(1)

where F encodes constant-velocity or coordinated-turn dynamics, and w(t) represents bounded stochastic
perturbations. To remain within the line-width constraint, F may be a simple block-diagonal operator,
and w(t) a zero-mean random vector with compact support. Variants can incorporate turn rates, altitude
capture profiles, and response to conflict alerts, with parameters drawn from empirically calibrated
distributions. [27]

Scenario generation for testing detect-and-avoid systems must satisfy several properties. First, scenar-
ios should cover a relevant range of miss distances, closure rates, approach angles, and vertical profiles,
including cases that do not result in conflict to assess false alert tendencies. Second, they should rep-
resent both typical operational encounters and low-probability but safety-relevant geometries near the
boundaries of detect-and-avoid capabilities. Third, scenarios must be constructed such that they can be
instantiated consistently in both simulation and live experiments with controllable deviations.

Operationally relevant encounter sets can be defined in terms of constrained sampling regions in the
space of initial relative states and closure geometries [28]. Let Q denote the set of encounter initial
conditions considered operationally plausible under a given concept of operations. Scenario generation
then selects samples {16} from Q according to a measure that may be proportional to estimated encounter
likelihoods or intentionally biased toward stressing conditions. In the latter case, importance sampling
concepts can be applied so that performance metrics estimated from biased samples can be reweighted
to approximate those under an unbiased encounter distribution, provided weights remain numerically
stable.

For integration with live testing, each simulated encounter is associated with a realizable trajectory
pair that respects dynamic limits and range airspace constraints. Mapping from abstract relative states to
executable waypoints is non-trivial when accounting for wind, surveillance latency, and tracking errors
[29]. Scenario design must incorporate margins that ensure the realized live trajectory remains within
an acceptable deviation from the intended geometry. This implies a two-stage approach: generate an
idealized encounter in relative coordinates, then solve for ownship and intruder reference trajectories
that approximate this relative evolution subject to aircraft performance and safety constraints.

An important consideration is the representation of non-cooperative intruders. For such intruders,
state information used by detect-and-avoid is derived from onboard sensors, potentially with intermit-
tent detection and clutter. Scenario generation must include variability in detection probability, false
tracks, and dropped tracks in a manner consistent with the sensor model used by the detect-and-avoid
implementation [30]. The encounter model thus becomes a joint distribution over kinematics and mea-
surement processes, forming the foundation for both simulation-based and live experiment evaluations
that seek internal consistency.

5. Detect-and-Avoid Algorithmic Framework and Formalization

Detect-and-avoid systems can be abstracted as mappings from sensed trajectories to alert states and
maneuver advisories. Let y(t) denote the sequence of measurements or tracks available to the system,
including ownship and intruder states as estimated by onboard or ground-based sensors. The detect-
and-avoid logic implements a decision function

a(t) = ®(yjo,)
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where a(t) represents the current advisory or alert level and @ is a causal mapping acting on the
observation history [31]. This abstraction covers algorithms ranging from simple rule-based thresholds
to stochastic optimization and model-predictive guidance.

Conflict prediction mechanisms typically model future relative motion under assumptions on both
ownship and intruder behavior. Consider a simplified predictive model in which the relative state evolves
according to

2(t+71) =G(1)2(2)

for a prediction horizon 7, where G encapsulates constant-velocity or bounded-acceleration assumptions.
A loss-of-well-clear region W in the relative state space is defined according to horizontal and vertical
distance thresholds and possibly temporal criteria [32]. The detect-and-avoid system declares a predicted
loss-of-well-clear when

Fre [0,T]:3(t+1)eW.

To limit expression width, W can be implicitly defined by short inequalities on relative distance and
altitude, understood as part of the modeling context.

Probabilistic extensions model intruder trajectories as random processes and compute risk indicators
based on predicted distributions [33]. Let p(z, t) denote the probability density of relative state under
these models. A simple probabilistic conflict indicator can be written as

T
R(t)=/0 ‘/Wp(z,t+‘r)dzd7'.

The detect-and-avoid logic may trigger alerts when R(t) exceeds calibrated thresholds [34]. This rep-
resentation links algorithmic parameters to interpretable risk measures, enabling test methodologies
to examine how variations in encounter geometry and sensor uncertainty map into R(t) values and
subsequent advisory timelines.

Guidance logic determines recommended maneuvers given a detected or predicted conflict. Let u(t)
denote a candidate ownship control command, constrained within an admissible set U that respects
performance limits and mission constraints. A simplified cost function can be expressed as

J(u) = [35]a Csep(”) + 8 Cyev (1)

where Cgep penalizes proximity to W and Cgey penalizes deviation from the nominal trajectory or
operational constraints, with non-negative weights a, 8. The detect-and-avoid system selects guidance
commands that aim to reduce J(u) while ensuring feasibility. Performance evaluation must inspect not
only whether selected maneuvers maintain separation but also whether they remain consistent with
operational norms, do not induce excessive oscillations, and allow for realistic human or autopilot
execution.

To support systematic testing, the detect-and-avoid algorithm is further characterized by timing
parameters, alerting logics, hysteresis, and filter settings. These parameters influence detection latency,
sensitivity to noise, and stability of advisories. Formalization in terms of input-output properties allows
one to define measurable quantities such as detection time, time margin to predicted loss-of-well-clear at
first alert, rate of advisory changes, and minimal separation achieved under closed-loop execution [36].
These quantities serve as the interface between algorithmic description and test methodology, enabling
both simulation and live experiments to be evaluated using common definitions.

6. Simulation-Based Performance Evaluation Methodologies

Simulation-based evaluation offers a controlled environment to explore detect-and-avoid performance
over large sets of encounter geometries that may be impractical or unsafe to realize in flight. To
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Table 10. Simulation Metrics.

Metric Description

Use

Loss-of-well-clear Boundary violation occurrence

Alert time margin Time before projected conflict at

alert

Measures residual risk in scenar-
i0s
Assesses responsiveness of logic

Table 11. Simulation Modeling Ingredients.

Ingredient Role Evaluation Aspect
Behavior models Pilot or autopilot response pat- Closed-loop realism
terns

Sensor models Noise, latency, dropouts

Effect on detection reliability

Table 12. Live Scenario Execution.

Element Description

Evaluation Use

Planned geometry Target relative trajectories

Realized geometry Measured flown trajectories

Basis for mapping to modeled
encounters

Validates behavior under real
effects

Table 13. Live Data and Safety Constructs.

Aspect Description Role

Instrumentation Reference positions and logs Reconstructs advisory timelines

Safety buffers Minimum separation margins Constrains scenario severity
Table 14. Evidence Integration Concepts.

Concept Description Purpose

Class-conditional Scenario-based probabilities Capture  performance by

metrics encounter type

Combined sources Simulation with live updates

Reflects both coverage and real-
ism

maintain relevance, simulation frameworks must integrate encounter models, sensor models, detect-
and-avoid logic, and vehicle dynamics in a manner that reflects key temporal and spatial scales. For
each simulated encounter, the framework records whether alerts are issued, guidance is followed, and
whether loss-of-well-clear or near-mid-air conditions occur, under predefined criteria. [37]

Let each encounter i be represented by a trajectory pair and associated measurements, and let X;
denote a binary indicator that a specified safety event occurs, for example a loss-of-well-clear. For
N simulated encounters drawn (possibly with biasing) from an encounter distribution, an empirical

estimate of event probability is

1 N
ﬁ:N;X,-.
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Table 15. Risk Structuring Elements.

Element Description Evaluation Role

Factorized risk Decomposed collision probabil-  Situates detect-and-avoid
ity among mitigations

Uncertainty ~ treat- Intervals and sensitivity checks =~ Expresses robustness of conclu-

ment sions

Table 16. Synthesized Perspective.

Theme Summary Implication
Combined evidence Joint use of simulation and live  Supports interpretable perfor-
data mance view
Stable framework Explicit models and metrics Enables adaptation to evolving
operations

If biased encounter sampling is used with importance weights w;, a weighted estimator can be expressed
as

Simulation methodologies must control numerical variance of such estimators by balancing coverage
of rare but critical scenarios with stable weighting schemes.

Performance evaluation extends beyond single event probabilities [38]. Metrics include the distribu-
tion of time margins at initial alert, minimal achieved separation conditioned on an alert, the frequency
of nuisance alerts in non-threatening encounters, and the interaction of multiple intruders. To capture
these, the simulation framework records continuous variables such as time to closest point of approach,
instantaneous separation at advisory issuance, and number of advisory reversals. Let 7; denote a time
margin for encounter i; one may compute empirical cumulative distributions and confidence bands to
assess how often detect-and-avoid provides margins above specified thresholds.

To introduce advanced modeling while respecting line width constraints, consider a simple hazard
rate representation for losses of well clear. Define a non-negative process A(¢) representing instantaneous
hazard given the state and detect-and-avoid actions [39]. An approximate relationship between hazard
and cumulative probability of loss-of-well-clear over a horizon T can be written as

T
PLoWCz‘/ A(r) dt.
0

In simulation, A(7) may be approximated using regression or classification models trained on trajectory
features and advisory histories. The evaluation then examines how algorithm configurations alter A(t)
profiles, without attributing all risk variation solely to detect-and-avoid.

An additional aspect is modeling execution variability. Human-in-the-loop or autopilot-in-the-loop
responses to advisories can be represented by stochastic delays and deviations from commanded maneu-
vers [40]. For each encounter, the closed-loop trajectory thus depends on both detect-and-avoid outputs
and sampled execution parameters. Denote by 8 a vector of behavioral parameters, with distribution
informed by experimental data or conservative assumptions. Simulation then estimates performance
metrics integrated over 6, which can be expressed conceptually as

N
Z (24, 0 [41]
i=1
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where g is an indicator of the safety event outcome. This formulation underscores that evaluation
outcomes reflect combined uncertainties in encounters and behavioral responses, motivating transparent
documentation of assumptions.

Ultimately, simulation-based methods are expected to provide broad coverage and sensitivity analyses
rather than definitive performance guarantees in isolation. Their role is to explore relationships between
detect-and-avoid design parameters and observable metrics, to map regions of adequate performance,
and to identify scenarios that warrant targeted live testing. Structured encounter sets and reproducible
simulation configurations ensure that results can be inspected, challenged, and updated as system designs
and operational concepts evolve. [42]

7. Live Testing Methodologies for Detect-and-Avoid Systems

Live testing complements simulation by exposing detect-and-avoid systems to real sensor phenomenol-
ogy, communication effects, and unmodeled dynamics. Because safety constraints limit the degree of
closeness and aggressiveness achievable in flight, live methodologies require careful design so that col-
lected data are informative while margins to unsafe conditions are maintained. This is typically achieved
by using piloted or uncrewed surrogate intruders, predefined geometries, and real-time safety monitors
that can override or constrain trajectories.

A live encounter scenario is defined by planned trajectories for ownship and intruder, with initial
conditions chosen to approximate target relative states from the encounter model. Let zj4,(¢) denote
the planned relative state and z,.(¢) the realized relative state. Deviations arise from wind, navigation
errors, pilot execution, and control system limitations [43]. Performance evaluation must account for
such deviations explicitly, for example by defining tolerances within which an encounter is considered
valid for a given target class. If deviations exceed tolerances, the data can still inform sensor and tracking
performance but may require careful handling before being used for evaluating alerting logic.

Instruments used during live tests include high-fidelity position reference systems, datalink logs,
onboard detect-and-avoid outputs, cockpit video, and ground-based radar or optical tracking. Synchro-
nization of these data sources is essential to reconstruct the time history of relative states and advisory
decisions. Let #; denote discrete time stamps at which all relevant quantities are aligned [44]. At each
tx, one may record detect-and-avoid state variables such as alert level, predicted time to loss-of-well-
clear, and suggested maneuver vector, as well as ground-truth relative position derived from reference
sensors. These aligned records form the basis for computing live analogues of the metrics defined in the
simulation environment.

An important methodological element is safety case compatibility. Live testing is performed under
constraints that ensure predicted separation remains above specified minima with buffers, even if detect-
and-avoid or pilot responses do not perform as expected [45]. As a result, actual mid-air collision risk
during testing is kept far below operational tolerances, and many scenarios are intentionally truncated
or diverted when safety margins decrease. Performance evaluation must interpret advisory timelines in
light of these interventions. For example, if a safety pilot intervenes and modifies the ownship trajectory,
one can still assess whether detect-and-avoid alerts up to that point were timely relative to what would
have been required in the absence of intervention.

To represent the linkage between planned and realized encounters, consider a mapping that classifies
each executed test into a nominal scenario label based on realized parameters. Let S denote a set of
scenario bins defined over relative approach angle, initial range, closure rate, and altitude [46]. For each
executed encounter j, one estimates a tuple of realized parameters and assigns it to an element of S
if within tolerance. Performance metrics can then be computed conditional on these bins, providing a
structured view of detect-and-avoid behavior across the realized live scenario space, even if it does not
exactly match the originally planned encounter set.

Live testing also reveals practical issues less evident in simulation, including track initiation latency,
dropouts, interference between multiple sensors, and human factors in interpreting alerts. While these
effects are often scenario-specific, systematically logging their occurrences allows for characterization
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of robustness. For instance, one may compute empirical frequencies of mis-correlated tracks or of alert
oscillations under certain geometries [47]. Though sample sizes are typically limited, such observations
can guide refinements of both detect-and-avoid logic and supporting models used in simulation.

8. Statistical Performance Assessment and Safety Argumentation

Combining simulated and live encounter results into an integrated performance assessment requires
statistical methods that acknowledge differences in sample size, encounter coverage, and fidelity. Let
&, and &; denote the sets of simulated and live encounters respectively, with associated outcomes on
events of interest such as timely alert, loss-of-well-clear, or adherence to guidance. For a given scenario
class c in a partition of encounter space, define indicator variables X; . for each encounter i. One may
then estimate class-conditional probabilities

L ies, Xic
Pse=liee, iec)
and analogously p; . for live data when sufficient samples exist.

In many cases, live data are sparse relative to the dimensionality of scenario space. A practical
strategy is to use simulation-based estimates as priors and update them with live evidence in a Bayesian
framework [48]. Without overcomplicating notation, consider a beta-binomial representation for a binary
metric in a given class. Denote prior parameters by ag, Sy informed by simulation, and observed live
outcomes by k successes out of n trials. The posterior parameters become

a=[49ag+k, B=pPBo+n-—k.

From these, one can derive posterior intervals for the performance metric that blend simulated expec-
tations with live observations. The choice of prior strength relative to live data reflects confidence in
simulation fidelity and should be explicitly documented. [50]

For metrics involving continuous quantities such as alert time margins, non-parametric or distri-
butional matching techniques may be used. One approach is to compare empirical distributions from
simulation and live data within overlapping scenario regions and compute discrepancy measures. Sig-
nificant discrepancies may prompt refinement of sensor or behavior models in simulation, or separate
treatment of certain operational regimes. The aim is not to force agreement but to understand when
simulation misrepresents conditions that materially affect detect-and-avoid performance.

To connect performance metrics with safety objectives, one constructs models of airspace-level risk
that incorporate encounter rates, detect-and-avoid effectiveness, and other mitigations [51]. A simplified
expression for expected collision probability per encounter, conditioned on detect-and-avoid operation,
can be structured as a product of factors representing steps in the defense-in-depth chain. For example,

Peol ® Genc Gihreat DAAfail Gresidual s

where each q denotes a conditional probability: occurrence of an encounter within a defined proximity,
evolution of that encounter into a threat without intervention, failure of detect-and-avoid to mitigate
given a threat, and residual failure of any remaining mechanisms. Detect-and-avoid evaluations pri-
marily inform gpaafi and related terms, while recognizing that the other factors are influenced by
traffic management, equipage, and operational constraints. This structure helps avoid overstating the
contribution or necessity of detect-and-avoid by situating it among other elements.

Confidence in these estimates is represented through intervals rather than single-point values [52].
For instance, an upper bound on gpaafil can be obtained from binomial confidence limits using aggre-
gated evidence across relevant scenario classes. If no failures are observed in n suitably representative
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encounters, a conservative bound can be expressed in a compact form based on standard approxima-
tions, remaining within the width constraint. These bounds can then be propagated through the risk
expression to derive upper bounds on collision probabilities under stated assumptions.

An additional consideration is robustness with respect to uncertainties in encounter models and
behavior. Sensitivity analysis can be performed by varying key parameters within plausible ranges
and recomputing performance and risk metrics [53]. While comprehensive exploration is limited by
dimensionality, targeted variations in closure rates, latency, and compliance assumptions can reveal
whether detect-and-avoid performance degrades sharply near certain boundaries. When such sensitiv-
ities are identified, operational constraints or algorithmic adjustments may be considered, and their
effects re-evaluated using the same framework.

Overall, statistical assessment and safety argumentation benefit from a clear separation between
observable quantities in tests, intermediate performance metrics, and derived risk indicators. By
expressing relationships through concise mathematical formulations and by explicitly stating modeling
assumptions, the evaluation remains open to revision as additional data and improved models become
available, without requiring fundamental changes to the underlying methodology.

9. Conclusion

Test and performance evaluation methods for uncrewed aircraft detect-and-avoid systems must reconcile
the need for broad scenario coverage with the constraints of safe and practical experimentation [54].
Relying solely on simulation obscures real-world sensor and integration effects, whereas relying solely
on live testing limits coverage and can under-sample critical edge cases. A combined approach, grounded
in explicit encounter modeling, algorithmic formalization, and statistically coherent integration of
evidence, provides a structured path to characterizing detect-and-avoid behavior across simulated and
live scenarios.

The discussion has outlined how encounter models can be constructed in terms of relative states,
stochastic dynamics, and measurement processes, allowing systematic generation of scenarios that are
both operationally meaningful and suitable for implementation in simulations and flight tests. Detect-
and-avoid functions have been abstracted as mappings from observation histories to advisories, with
associated predictive and guidance components expressed through interpretable quantities such as risk
integrals and cost functions. This abstraction supports consistent definitions of performance metrics,
including detection timeliness, false and nuisance alert frequencies, and minimal achieved separations
under closed-loop response. [55]

Simulation-based methodologies enable exploration of large encounter sets, controlled variation
of algorithm parameters, and analysis of sensitivities to sensor and behavior assumptions. Live test-
ing methodologies incorporate instrumentation, scenario binning, and explicit treatment of deviations
between planned and realized encounters, yielding data that expose integration issues and provide
direct observations of system performance in realistic environments. Statistical frameworks that com-
bine these sources of evidence can generate bounded estimates of detect-and-avoid effectiveness and its
contribution to collision risk, while explicitly reflecting uncertainties in models and data.

The resulting perspective does not treat detect-and-avoid as a singular guarantee of safety but as one
component within a layered architecture of mitigations, whose performance can be characterized using
transparent and adaptable methods. As operational concepts, technologies, and regulatory expectations
evolve, the described framework can be refined by updating encounter models, incorporating new sensor
characteristics, and extending data sets, without altering the core principles by which simulated and live
encounter evidence are used to assess detect-and-avoid systems [56].
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